Appendix A
Cooper Pair Box Hamiltonian

The Cooper pair box consists of a superconducting island coupled to a superconducting
ground via a Josephson junction, or two islands connected by a Josephson junction.
The Hamiltonian has the same form in both cases. The equivalent circuit is shown in
Fig. (4.1). The bias voltage V could be an intentionally applied dc or ac voltage, or a
quantum fluctuating voltage associated with a microwave photon field, or it could be a
random voltage representing some local charge asymmetry in the vicinity of the island.
For simplicity, we will take the voltage to be supplied by an ideal zero-impedance
source. Because figuring out the Hamiltonian of a system connected to a power supply
can be confusing, we will consider a physical realization of the voltage source as a very
large ‘buffer’ capacitor Cp as shown in Fig. (A.1). In this configuration, the circuit
has two islands with corresponding node fluxes, ®; and ®5. The charging energy can
be determined by writing the Lagrangian for the two flux variables
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where the capacitance matrix is given by
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The electrostatic Hamiltonian is now readily expressed in terms of the charges canon-
ically conjugate to ®

H= Q"0 (A.5)
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where
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Fig. A.1 Equivalent circuit for determining the electrostatic energy of a Cooper pair box
biased by a voltage source represented by a large capacitor Cg. The Josephson junction
capacitance Cy is coupled to the voltage source via the capacitor Cy. There are two node
fluxes ®; and Po.

The inverse capacitance matrix is given by

1 1 Ce+Cs O
= . A.
¢ CoCp + CxCy + CpCy Cy Cg+ 0y (A1)

This can be simplified by defining the total capacitance to ground for each of the two
islands

Cis = Cy + Oy (A.8)
Cos = O + Cls, (A.9)
and the two series capacitances
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Using these definitions, the inverse capacitance matrix can be written
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where the dimensionless coupling constant is given by
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Cq
= —. A.13
p Cg + Oy ( )
The electrostatic Hamiltonian can then be written
Q3 Q> Q3
H = . A14
2C» * 6022 @it 2Cox ( )
We define the ‘nominal’ bias voltage as’
Q2
Vg = =—. A.16
P~ Cos ( )
In terms of this we can write the electrostatic Hamiltonian as
Q7 1 2
H = + BVBQ1 + _CQZVB. (A17)
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Including now the Josephson junction energy and quantizing we arrive at the full
Cooper pair box Hamiltonian

Q3
H =
2Chy
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+ BVaQ1 — Eycos =1 + S Cox V3. (A.18)

Note that the last term is a constant of the motion and can be ignored.
Defining the dimensionless offset (or ‘gate’) charge ng

CixVB _CgVB

ng = —f 5o~ o (A.19)

(with the latter equality only in the limit of large Cz) and defining the charging energy
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we can also write the Hamiltonian in terms of the integer-valued number operator
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(A.21)

representing the excess number of Cooper pairs on island one. Its conjugate variable is
the relative phase angle for the superconducting order parameter across the junction

2e (I)l
= —¢ =27r— A.22
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IN.B. The actual voltage on island two is
OH
-2 :VB+B_Q1 ) (A.15)
0Q2 Cox.

In the limit of of large Cp the actual voltage is fully buffered (i.e., becomes independent of Q1) and
is given by V = V(Q1 =0) = V3.



110 Cooper Pair Box Hamiltonian

where @ is the superconducting flux quantum. In terms of this pair of dimensionless
charge and phase variables, the Hamiltonian becomes

1
H = 4Ec (R* — 2ngn) — Ejcosp + ECQEVBz (A.23)
. 2 1 C12Cox
= 4EC (TL — ng) — EJ COS @ + 5@‘/]327 (A24)

It is sometimes convenient to work in the (angular) position basis with wave function
U(p) and n = —i% being represented by the angular momentum conjugate to the an-
gle . In other cases, it is more convenient to work in the angular momentum (charge)
eigenbasis and recognize that the operator cosy term is a ‘torque’ that changes the
angular momentum by 41 unit.

Dropping the last constant term in Eq. (A.24) and assuming the voltage bias is
fully buffered (large Cg), we arrive at Eq. (4.2). We again emphasize that ng is a
continuous variable (and often subject to 1/f noise), while 7 is integer-valued (i.e., is
the angular momentum conjugate to the angular variable ¢) and changes by +1 each
time a Cooper pair tunnels through the Josephson junction connected across Cj.

A.1 Cooper Pair Box Coupled to an LC Resonator

Consider the circuit in Fig. (A.2) which shows a Cooper pair box coupled to an LC
resonator. For simplicity we will ignore the possibility of a dc bias voltage on the qubit.
The Hamiltonian can be immediately written down by analogy with Eq. (A.14)

H = H; + Hy + Hyo (A25)
Q3 2e
H, = - F — A2
i 2012 J COS 7 1 ( 6)
_ Q3 1 4,
HQ — 2022 + 2LB (1)2 (A27)
Hypy = C’inQZ (A.28)
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Let the eigenfunctions of H; obey
Hilj) = €l7), (A.29)
and let us denote the matrix elements of the charge operator in this basis by
Qi = (j1Qu k). (A.30)

This is the analog of the dipole matrix elements of an atom. The LC resonator hamil-
tonian can be written
Hy = hweala, (A.31)

where w, = \/ﬁ, and the second charge operator can be written following Eq. (2.42)

Q2 = —iQazpr (4 —al), (A.32)
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Fig. A.2 Equivalent circuit for a Cooper pair box (without dc voltage bias) capacitively
coupled to an LC resonator.

where following Eq. (2.43) we have

Cphw,
Q2zrr = B2 . (A.33)

We now have the full Hamiltonian

BQ2zprQ ik
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5)(@— a")(kl, (A.34)

in a form which is convenient for numerical diagonalization.

If the spectrum of the qubit is sufficiently anharmonic, we may be able to restrict
our attention to its two lowest states. Projecting our Hamiltonian onto these two states
allows us to represent the qubit operators in terms of Pauli spin matrices. Taking the
ground state |0) to be represented by spin down | |) and the excited state |1) to be
represented by spin up | 1) we can represent all possible qubit operators within the
2 x 2 Hilbert space:

oy0l = -5~ (A.35)
)= (A.36)
1)(0] =0 (A.37)

0Y(1] = o~ (A.38)
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The Hamiltonian then becomes (dropping an irrelevant constant)

- Fuw 1+4+0* 1—0*
H = thde+ ol Uz—i(d—df)h {911 5 + goo 5 + 9100'+ + 9010'_} (ASQ)
where
thl = €1 — € (A40)
and
hgsn = ﬁQZZPFng. (A1)
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If the eigenstates of H; have a static dipole moment, then the diagonal matrix elements
of the charge operator )1 will be non-zero. Here we are, for simplicity, ignoring the
possibility of a d¢ bias which produces an offset charge. In this case H; has a charge-
parity symmetry which guarantees that the diagonal matrix elements of the charge
operator ()1 vanish. We are free to choose a gauge (i.e., choose the arbitrary phases of
the eigenstates of Hy) so that go1 = g10 = g is real. We then arrive at the celebrated
Jaynes-Cummings Hamiltonian

H = hwea'a + %az —ihg(a—ah (ot +07), (A.42)

which, when the rotating wave approximation is justified, further simplifies to

hwot

H = hwea'a + o* —ihg(ac™ —alo™). (A.43)

We can reduce this to the more familiar expression given in Eq. (6.7) by making a
rotation of the spin axes via the unitary transformation

U=e¢io, (A.44)

which yields
UotU" = +io™ (A.45)
Uo U' = —io™t. (A.46)

and thus finally
hw
H = hweata + %gz + hglaoc™ +ato™). (A.47)



