
Appendix A

Cooper Pair Box Hamiltonian

The Cooper pair box consists of a superconducting island coupled to a superconducting
ground via a Josephson junction, or two islands connected by a Josephson junction.
The Hamiltonian has the same form in both cases. The equivalent circuit is shown in
Fig. (4.1). The bias voltage V could be an intentionally applied dc or ac voltage, or a
quantum fluctuating voltage associated with a microwave photon field, or it could be a
random voltage representing some local charge asymmetry in the vicinity of the island.
For simplicity, we will take the voltage to be supplied by an ideal zero-impedance
source. Because figuring out the Hamiltonian of a system connected to a power supply
can be confusing, we will consider a physical realization of the voltage source as a very
large ‘buffer’ capacitor CB as shown in Fig. (A.1). In this configuration, the circuit
has two islands with corresponding node fluxes, Φ1 and Φ2. The charging energy can
be determined by writing the Lagrangian for the two flux variables
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Defining

Φ ≡
(
Φ1

Φ2

)
, (A.2)

the Lagrangian can be written

L =
1

2
Φ̇TCΦ̇, (A.3)

where the capacitance matrix is given by

C =

(
Cg + CJ −Cg

−Cg Cg + CB

)
. (A.4)

The electrostatic Hamiltonian is now readily expressed in terms of the charges canon-
ically conjugate to Φ

H =
1

2
QTC−1Q, (A.5)

where

Q ≡
(
Q1

Q2

)
. (A.6)
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Fig. A.1 Equivalent circuit for determining the electrostatic energy of a Cooper pair box
biased by a voltage source represented by a large capacitor CB. The Josephson junction

capacitance CJ is coupled to the voltage source via the capacitor Cg. There are two node
fluxes Φ1 and Φ2.

The inverse capacitance matrix is given by

C−1 =
1

CgCB + CgCJ + CBCJ

(
Cg + CB Cg

Cg Cg + CJ

)
. (A.7)

This can be simplified by defining the total capacitance to ground for each of the two
islands

C1Σ ≡ CJ + C2s (A.8)

C2Σ ≡ CB + C1s, (A.9)

and the two series capacitances
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(A.10)
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. (A.11)

Using these definitions, the inverse capacitance matrix can be written

C−1 =





1
C1Σ

β
C2Σ

β
C2Σ

1
C2Σ



 , (A.12)

where the dimensionless coupling constant is given by
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β ≡
Cg

Cg + CJ
. (A.13)

The electrostatic Hamiltonian can then be written

H =
Q2

1

2C1Σ
+ β

Q2

C2Σ
Q1 +

Q2
2

2C2Σ
. (A.14)

We define the ‘nominal’ bias voltage as1

VB =
Q2

C2Σ
. (A.16)

In terms of this we can write the electrostatic Hamiltonian as

H =
Q2

1

2C1Σ
+ βVBQ1 +

1

2
C2ΣV

2
B . (A.17)

Including now the Josephson junction energy and quantizing we arrive at the full
Cooper pair box Hamiltonian

H =
Q̂2

1

2C1Σ
+ βVBQ̂1 − EJ cos

2e

!
Φ1 +

1

2
C2ΣV

2
B . (A.18)

Note that the last term is a constant of the motion and can be ignored.
Defining the dimensionless offset (or ‘gate’) charge ng

ng ≡ −β
C1ΣVB

2e
≈ −

CgVB

2e
, (A.19)

(with the latter equality only in the limit of large CB) and defining the charging energy

EC ≡
e2

2C1Σ
, (A.20)

we can also write the Hamiltonian in terms of the integer-valued number operator

n̂ ≡
Q̂1

2e
(A.21)

representing the excess number of Cooper pairs on island one. Its conjugate variable is
the relative phase angle for the superconducting order parameter across the junction

ϕ =
2e

!
Φ1 = 2π

Φ1

Φ0
, (A.22)

1N.B. The actual voltage on island two is

V =
∂H

∂Q2
= VB + β

Q1

C2Σ
. (A.15)

In the limit of of large CB the actual voltage is fully buffered (i.e., becomes independent of Q1) and
is given by V ≈ V (Q1 = 0) = VB.
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where Φ0 is the superconducting flux quantum. In terms of this pair of dimensionless
charge and phase variables, the Hamiltonian becomes

H = 4EC

(
n̂2 − 2ngn̂

)
− EJ cosϕ+

1

2
C2ΣV

2
B (A.23)

= 4EC (n̂− ng)
2 − EJ cosϕ+

1

2

C1ΣC2Σ

Cg + CJ
V 2
B , (A.24)

It is sometimes convenient to work in the (angular) position basis with wave function
Ψ(ϕ) and n̂ = −i ∂

∂ϕ being represented by the angular momentum conjugate to the an-
gle ϕ. In other cases, it is more convenient to work in the angular momentum (charge)
eigenbasis and recognize that the operator cosϕ term is a ‘torque’ that changes the
angular momentum by ±1 unit.

Dropping the last constant term in Eq. (A.24) and assuming the voltage bias is
fully buffered (large CB), we arrive at Eq. (4.2). We again emphasize that ng is a
continuous variable (and often subject to 1/f noise), while n̂ is integer-valued (i.e., is
the angular momentum conjugate to the angular variable ϕ) and changes by ±1 each
time a Cooper pair tunnels through the Josephson junction connected across CJ.

A.1 Cooper Pair Box Coupled to an LC Resonator

Consider the circuit in Fig. (A.2) which shows a Cooper pair box coupled to an LC
resonator. For simplicity we will ignore the possibility of a dc bias voltage on the qubit.
The Hamiltonian can be immediately written down by analogy with Eq. (A.14)

H = H1 +H2 +H12 (A.25)

H1 =
Q̂2

1

2C1Σ
− EJ cos

2e

!
Φ̂1 (A.26)

H2 =
Q̂2

2

2C2Σ
+
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2LB
Φ̂2

2 (A.27)

H12 =
β

C2Σ
Q̂1Q̂2. (A.28)

Let the eigenfunctions of H1 obey

H1|j〉 = εj |j〉, (A.29)

and let us denote the matrix elements of the charge operator in this basis by

Qjk = 〈j|Q̂1|k〉. (A.30)

This is the analog of the dipole matrix elements of an atom. The LC resonator hamil-
tonian can be written

H2 = !ωcâ
†â, (A.31)

where ωc =
1√

LBC2Σ
, and the second charge operator can be written following Eq. (2.42)

Q̂2 = −iQ2ZPF

(
â− â†

)
, (A.32)
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Fig. A.2 Equivalent circuit for a Cooper pair box (without dc voltage bias) capacitively

coupled to an LC resonator.

where following Eq. (2.43) we have

Q2ZPF =

√
CB!ωc

2
. (A.33)

We now have the full Hamiltonian

H = !ωcâ
†â+

∞∑

k=0

εk|k〉〈k|− i
βQ2ZPFQjk

2C2Σ
|j〉(â− â†)〈k|, (A.34)

in a form which is convenient for numerical diagonalization.
If the spectrum of the qubit is sufficiently anharmonic, we may be able to restrict

our attention to its two lowest states. Projecting our Hamiltonian onto these two states
allows us to represent the qubit operators in terms of Pauli spin matrices. Taking the
ground state |0〉 to be represented by spin down | ↓〉 and the excited state |1〉 to be
represented by spin up | ↑〉 we can represent all possible qubit operators within the
2× 2 Hilbert space:

|0〉〈0| =
1− σz

2
(A.35)

|1〉〈1| =
1 + σz

2
(A.36)

|1〉〈0| = σ+ (A.37)

|0〉〈1| = σ−. (A.38)
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The Hamiltonian then becomes (dropping an irrelevant constant)

H = !ωcâ
†â+

!ω01

2
σz−i(â−â†)!

{
g11

1 + σz

2
+ g00

1− σz

2
+ g10σ

+ + g01σ
−
}

(A.39)

where
!ω01 ≡ ε1 − ε0 (A.40)

and

!gjk ≡
βQ2ZPFQjk

2C2Σ
. (A.41)

If the eigenstates ofH1 have a static dipole moment, then the diagonal matrix elements
of the charge operator Q1 will be non-zero. Here we are, for simplicity, ignoring the
possibility of a dc bias which produces an offset charge. In this case H1 has a charge-
parity symmetry which guarantees that the diagonal matrix elements of the charge
operator Q1 vanish. We are free to choose a gauge (i.e., choose the arbitrary phases of
the eigenstates of H1) so that g01 = g10 = g is real. We then arrive at the celebrated
Jaynes-Cummings Hamiltonian

H = !ωcâ
†â+

!ω01

2
σz − i!g(â− â†)(σ+ + σ−), (A.42)

which, when the rotating wave approximation is justified, further simplifies to

H = !ωcâ
†â+

!ω01

2
σz − i!g(âσ+ − â†σ−). (A.43)

We can reduce this to the more familiar expression given in Eq. (6.7) by making a
rotation of the spin axes via the unitary transformation

Û = ei
π
4 σz

, (A.44)

which yields

Uσ+U † = +iσ+ (A.45)

Uσ−U † = −iσ+. (A.46)

and thus finally

H = !ωcâ
†â+

!ω01

2
σz + !g(âσ+ + â†σ−). (A.47)


